CC BY 4.0 (除特别声明或转载文章外)
如果这篇博客帮助到你,可以请我喝一杯咖啡~
Parameter-Efficient Prompt Tuning Makes Generalized and Calibrated Neural Text Retrievers
Abstract
提示调整尝试更新预训练模型中的少数任务特定参数。 它在语言理解和生成任务上都取得了与微调完整参数集相当的性能。 在这项工作中,我们研究了神经文本检索器的快速调整问题。 我们为跨域、跨域和跨主题设置的文本检索引入了参数有效的提示调整。 通过广泛的分析,我们表明该策略可以缓解基于微调的检索方法面临的两个问题——参数效率低和泛化性弱。 值得注意的是,它可以显着提高检索模型的域外零样本泛化能力。 通过仅更新 0.1% 的模型参数,即时调优策略可以帮助检索模型获得比更新所有参数的传统方法更好的泛化性能。 最后,为了便于研究检索器的跨主题泛化性,我们策划并发布了一个学术检索数据集,其中包含 87 个主题的 18K 查询结果对,使其成为迄今为止最大的特定主题数据集。 1
Introduction
parameter-efficiency
generalizability
parameter redundancy
Furthermore, fine-tuning the full parameters of a pre-trained retriever for multi-lingual (Litschko et al., 2022) or cross-topic settings can also result in parameter-inefficiency.
examine a line of mainstream PE methods
- in-domain
 - crossdomain
 - cross-topic settings.
 
first
PE prompt tuning can help empower the neural model with better confidence calibration, which refers to the theoretical principle that a model’s predicted probabilities of labels should correspond to the ground-truth correctness likelihood
Second
it encourages better performance on queries with different lengths from in-domain training, demonstrating PE methods’ generalization capacity to out-of-domain datasets.
this work aims to advance the neural text retrievers from three aspects
- problem:
 
we propose to leverage PE learning - Understanding
 its confidence-calibrated prediction and query-length robustness. - Dataset:
we construct OAG-QA # Related Work - Neural Text Retrieval - Generalization in Text Retrieval - Parameter-Efficient Learning
Challenges in Neural Text Retrieval
- 
    
Dense Retriever
the Noise Contrastive Error (NCE)
 - Late-Interaction Retriever
 - 
    
Parameter Inefficieny
substantial parameter redundancy from two aspects
- 
        
first
training dual-encoders double the size of the parameters to be tuned.
 - 
        
Second
the cross-lingual (Litschko et al., 2022) and crossdomain (Thakur et al., 2021) transfer may require additional full-parameter tuning on each of the individual tasks and consequently increase the number of parameters by several times
 
 - 
        
 - 
    
Weak Generalizability
cannot generalize well to zero-shot cross-domain benchmarks
widely adopted in downstream scenarios
expensive.
 
Parameter-Efficient Transfer Learning
PE learning aims to achieve comparable performance to finetuning by tuning only a small portion of parameters per task
Parameter-Efficient Learning Methods
- Adapters
 - BitFit(self-attention,FFN,Layer Norm Operations)
 - Lester et al. &P-Tuning
 - Prefix-Tuning & P-Tuning v2 .
    
In-Domain Parameter-Efficiency
Cross-Domain and Cross-Topic Generalizability
we present OAG-QA (Cf. Table 3) which consists of 17,948 unique queries from 22 scientific disciplines and 87 fine-grained topics.
Conclusion
PE learning can achieve comparable performance to full-parameter fine-tuning in in-domain
 
Finally, we construct and release the largest fine-grained topic-specific academic retrieval dataset OAG-QA,
Discussion
- first a long-standing challenge is that it converges slower and is relatively more sensitive to hyper-parameters
 - Second dataset requires further exploration.
 - Third However, many other practical problems also suffer from the challenges of biased training data and generalization